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ABSTRACT  
 

Traffic grooming, which is the combination of traffic demands into a single wavelength channel is a well-known issue in 
Wavelength Division Multiplexing (WDM) optical networks. Grooming allows wavelength channels with high 
transmission capacity to serve many low-rate traffic demands simultaneously. In this paper, we address the traffic 
grooming, routing and wavelength assignment (GRWA) problem for WDM optical networks by considering multiple 
design objectives: maximizing the number of demands (commodities) served, minimizing the number of wavelength 
channels assigned, and minimizing number of transmission ports required. We use a hybrid multi-objective evolutionary 
computation approach consisting of Genetic Algorithm for routing allocation, Extended Traffic Grouping for traffic 
grooming and Maximum Degree First for wavelength assignment (GA-ETG-MaxDF). Then we apply the Fast Non-
dominated Sorting Genetic Algorithm (NSGA-II) to search for the set of non-dominated candidate solutions in multi-
objective space. We compare the simulation results obtained from our approach (GA-ETG-MaxDF) with the alternative 
approaches (MST and MRU) published in the literature. We also examine standard performance metrics for multi-
objective optimization solutions such as Hyper-volume, Spread, and Inverted Generational Distance. Based on our 
results, we conclude that the proposed technique is effective for solving the multi-objective GRWA problem in WDM 
optical networks. 
 
Keyword: Multi-Objective Genetic Algorithm, multi-objective optimization, traffic grooming, routing and wavelength 
assignment, WDM optical network. 
 
INTRODUCTION 
 
In new generation optical networks, wavelength division 
multiplexing (WDM) technology will be widely used. 
Each optical fiber link can be divided into multiple 
channels which are identified by the length of light waves, 
called “wavelength channels”. Dense wavelength division 
multiplexing (DWDM) technology can support over a 
hundred wavelength channels per fiber (Awwad et al., 
2007). The transmission speed of each channel can be 
several Gigabits per second (Gbps). Speeds of 2.488 Gbps 
(OC-48), 10 Gbps (OC-192) and 40 Gbps (OC-768) have 
been proposed (Dutta and Rouskas, 2002) for commercial 
use. Most traffic demands (connections) typically have 
lower data rates than the full capacity of a wavelength 
channel. In order to fully utilize the network resources, 
multiple low-speed traffic streams need to be efficiently 
multiplexed or “groomed” into high-speed light-paths for 
data transmission between sources and destinations. This 
procedure is known as Traffic Grooming. Traffic 
grooming consists of three sub-problems which are 
Grooming, Routing and Wavelength Assignment 

(GRWA). We denote a source-destination node pair with 
traffic demand as a “commodity” (Jaekel et al., 2008). 
Grooming combines multiple low-data-rate commodities 
into a higher transmission rate channel. Routing allocates 
a light-path to each traffic flow in a given set of 
commodities. Finally, a group of commodities is assigned 
to an available wavelength channel. Grooming, routing 
and wavelength assignment are interrelated. Optimal 
routing depends on effective grouping, and effective 
wavelength assignment requires optimal routing. The 
GRWA problem tries to find optimal solutions for 
routing, and wavelength assignment with multi-
commodity flows. The traffic grooming or GRWA 
problem is an NP complete problem (Shalom et al., 
2007). 
 
Previous research has considered the GRWA problem 
with various different design objectives. Another study, 
Zhu and Mukherjee (2002, 2003) have considered the 
GRWA problem to improve network throughput and 
reduce the network cost and to reduce the grooming 
device cost while serving all traffic demands. While, 
Awwad et al. (2007) considered GRWA to minimize total 
cost of grooming and conversion equipment, Shen and *Corresponding author email: naruemon@cpe.kmutt.ac.th 
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Tucker (2009) considered GRWA to maximize the served 
traffic demand and minimize the wavelength capacity. 
Given many different potential design objectives, the 
GRWA problem can be formulated as a multi-objective 
optimization problem. In such problems, multiple 
evaluation functions influence the decision of which 
option to select. 
 
This paper considers the GRWA problem with three 
objective functions. We attempt to simultaneously 
maximize the number of accepted commodities, minimize 
the number of wavelength channels and minimize the 
number of switching ports. Each of these objectives can 
conflict with the others such that when one is optimized, 
the other functions may get worse (Coit and Konak, 
2006). For instance, maximizing accepted commodities 
normally requires a large number of wavelengths and 
switching ports. Minimizing the number of switching 
ports could cause a large number of commodities to be 
blocked or fewer commodities to be accepted. Several 
Multi-objective Evolutionary Algorithms such as Strength 
Pareto Evolutionary Algorithm: SPEA2 (Zitzler et al., 
2001) and Fast Non-dominated Sorting Genetic 
Algorithm: NSGA-II (Deb et al., 2002) has been 
previously proposed for general multi-objective 
optimization problems. To solve the multi-objective 
GRWA problem, we propose a new evolutionary 
computation heuristic called “GA-ETG-MaxDF” and use 
it with NSGA-II. We construct potential routes by using a 
Genetic Algorithm (GA), combine multiple low rate 
traffic demands by using Extended Traffic Grouping 
(ETG) algorithm and assign the wavelength channel by 
using the Maximum Degree First (MaxDF) algorithm. We 
then apply the NSGA-II to search for non-dominated 
solutions in the three dimensional space of accepted 
commodities, required wavelength channels and required 
switching ports. The results are provided as non-
dominated candidates. 
 
After implementing our approach in a simulation, we 
compare the results from GA-ETG-MaxDF with those 
from the alternative approaches (MST and MRU). We 
also compare the approaches in terms of indicators of 
multi-objective solution quality. 
 
MATERIALS AND METHODS 
 
Traffic Grooming, Routing and Wavelength 
Assignment Problem 
Traffic grooming, routing and wavelength assignment 
(GRWA) problems have been previously studied by a 
number of researchers. Traffic grooming has been applied 
to both ring network topology (Wang et al., 2001; Dutta 
and Rouskas, 2002; Zhu and Mukherjee, 2003) and mesh 
network topology (Zhu and Mukherjee, 2002; Hu and 
Leida, 2004; Prathombutr et al., 2005). Traffic grooming 
in mesh networks is usually difficult to solve optimally 
(Zhu and Mukherjee, 2003). The evolution, challenges 

and future vision of traffic grooming and all-optical 
network are proposed by Saleh and Simmons (2012). 
 
Zhu and Mukherjee (2002) proposed grooming, routing 
and wavelength assignment techniques to improve the 
network throughput subject to a limited number of 
transmitters, receivers and available wavelength channels. 
They used the Maximizing Single-hop Traffic (MST) 
heuristic algorithm to assign multiple requested 
connections to a new light path. If the network has 
enough network resources (i.e., wavelength channels, 
transmitters, receivers, grooming devices and wavelength 
converters), all requested connections can traverse on a 
single light path and the traffic delay will be minimized. 
If there are not enough network resources to support a 
new light path, the method assigns connections that can 
complete in a single hop light path before connections 
that require multiple light paths. Zhu and Mukherjee 
(2002) used a Maximizing Resource Utilization (MRU) 
heuristic algorithm to allocate limited network resources. 
The MRU approach sets up a light path using available 
spare wavelength channels in the logical network links, 
possibly assigning connection requests to multiple light 
paths, then multiplexes the remaining connection requests 
with the existing light paths. The connection that uses the 
fewest established light paths will be groomed first. Hu 
and Leida (2004) proposed a GRWA technique to 
minimize the total number of transponders required in the 
network, subject to a limited number of wavelength 
channels in each fiber and requiring that each light path 
use the same wavelength channel for every link that it 
traverses (i.e., wavelength continuity constraint). In their 
work, they assumed a transponder is required at each end 
of the light path. Thus minimizing the number of 
transponders also minimized the number of wavelengths. 
They solved their GRWA problem using a commercial 
tool called CPLEX 7.0. In a recent study, Awwad et al. 
(2007) proposed a GRWA in a WDM mesh network with 
sparse resources (i.e., some logical network nodes are 
able to groom while others are not). Their objective was 
to minimize the total costs for traffic grooming and 
wavelength conversion devices. The traffic grooming 
device has more functions and higher cost than the 
wavelength conversion device. Both types of devices are 
deployed on the nodes based on the decision variables of 
the optimization model. Because their GRWA 
implementation allows a light path to use different 
wavelength channels, it significantly increases blocking 
probability. They applied a Genetic Algorithm (GA) to 
solve their GRWA problem and compared the results with 
their previous approaches including Most-contiguous 
(MC) heuristic algorithm, and Fixed Alternated Routing 
and First Fit Wavelength Assignment (FAR-FF) 
algorithm. 
 
Shen and Tucker (2009) proposed an algorithm to select 
the best locations for opaque nodes (a kind of grooming 
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device). They aimed to maximize served traffic demands 
under a limited network capacity and minimize the 
required wavelength channel while all traffic demands are 
served. Chatterjee et al. (2012) proposed a priority based 
routing and wavelength assignment with traffic grooming 
mechanism (PRWATG) to reduce blocking probability. 
The blocking probability increases when the number of 
connections is increased. In their algorithm, which 
enforces the wavelength continuity constraint, 
connections with the same source and destination are 
combined first to avoid optical to electrical conversions. 
Then, the set of routes and wavelength channels are 
assigned to the groomed connections according to their 
priority. A groomed connection with a direct path had 
higher priority than one with an indirect path. Zhao et al. 
(2013) considered the GRWA problem with the goal of 
satisfying quality of transmission requirements (QoT). 
The QoT Guaranteed (QoT-G) algorithm accommodates a 
set of traffic demands with heterogeneous bandwidth 
requirements in order to minimize the blocking 
probability. Their paper used the shortest path algorithm 
for routing. In the grooming step, the connection requiring 
the most bandwidth is considered first. If multiple 
connections have the same bandwidth requirement, the 
connection with the shorter path is selected. Most studies 
in the literature (Dutta and Rouskas, 2002; Zhu and 
Mukherjee, 2003; Hu and Leida, 2004; Awwad et al., 
2007; Chatterjee et al., 2012; Zhao et al., 2013) have 
concentrated on traffic grooming with a single objective 
function. Research work on traffic grooming with 
multiple objectives has been proposed (Prathombutr et al., 
2005). 
 
Prathombutr et al. (2005) proposed an algorithm for 
traffic grooming in WDM optical mesh networks with the 
objectives of maximizing the traffic throughput, 
minimizing the number of transceivers and minimizing 
the average propagation delay. They considered the 
GRWA problem with and without a wavelength 
converter. They applied the SPEA approach to search a 
set of non-dominated solutions. They offered superior 
results than those from MST and MRU (Zhu and 
Mukherjee, 2002). The results from MST and MRU are 
also used to compare with the obtained solutions from the 
Multi Objective Evolutionary Algorithm (MOEA) as 
proposed in (De et al., 2008). MST and MRU algorithms 
are easy to follow and implement. Traffic grooming is a 
network design problem that the network topology affects 
the obtained results. MST and MRU are developed on the 
basis of the shortest path algorithm and well known as 
efficient traffic grooming algorithms. 
 
Multi-Objective Network Design 
Multi-objective network design evolved from a network 
model that seeks to optimize only one objective function, 
but with many design constraints such as network design 
cost, limitation of maximum delay and network 

survivability requirement (Hsu et al., 2008). Assis et al. 
(2008) proposed a true multi-objective network design 
model that minimizes total link length and total number of 
hops, while maximizing link load simultaneously. This 
research combined all objective functions into one 
function and then optimized the single objective function 
while maintaining the design constraints. A mixed integer 
programming tool (CPLEX 10.0) was used to find the 
optimal solution. Kavian et al. (2008) also proposed a 
network design model with multiple objective functions. 
Their network model minimized bandwidth consumption 
and end-to-end delay. They used a genetic algorithm to 
minimize each function individually and then combine the 
obtained results from both objectives. Finally, Banerjee 
and Kumar (2007) proposed a network design to 
minimize total network cost (from nodes, links, and 
amplifier) and also minimize average delay. Their 
research also found a set of optimal solutions using an 
advanced genetic algorithm but they evaluated each 
solution with both objective functions at the same time. 
Some papers Cahon et al. (2006) and Ribeiro et al. (2007) 
have suggested that multi-objective network design can 
solve all objectives simultaneously by using parallel 
computing to find the best solution from all possible sets. 
Parallel computing distributes the possible sets into 
clusters and then combines the distributed results to get 
the best solution. De et al. (2008) proposed the Multi 
Objective Evolutionary Algorithm (MOEA) for 
optimizing traffic grooming problem by considering 
multiple objectives, i.e., throughput, transceiver 
requirement and intermediate propagation delay 
simultaneously. The obtained results are compared with 
those of MST and MRU algorithms. Roa et al. (2009) 
proposed a Multi Objective Evolutionary Algorithm by 
considering two design objectives, i.e., minimizing 
blocking number and the number of wavelength 
converters. The results are compared with the solutions 
from SPEA algorithm. Lin et al. (2012) suggested two 
heuristics algorithms, Multicast Trail Grooming (MTG) 
and Multiple Destination Trail-based Grooming (MDTG) 
to minimize the network cost in terms of the number of 
higher layer electronic ports and number of wavelengths 
used. The solutions obtained by two heuristics are 
compared with the ILP optimal solution. In a most recent 
study, Chen et al. (2013) proposed the bi-objective ILP 
for maximizing the throughput and then minimizing the 
energy consumption for the obtained maximized 
throughput. The obtained results are compared with the 
single objective optimization. In this paper, we use a true 
multi-objective optimization algorithm which maintains 
separate objective functions for each criterion. There are 
many multi-objective optimization approaches as 
described in the next section. 
 
Multi-Objective Genetic Algorithms 
Genetic Algorithm (GA) approaches have been used to 
solve multi-objective optimization problems in several 
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areas. The efficient multi-objective GA provides an 
encouraging approach for searching toward the true 
Pareto front while maintaining diversity in the population 
(Konak et al., 2006). Various Multi-Objective Genetic 
Algorithms have been previously discussed in (Konak et 
al., 2006; Leesutthipornchai et al., 2009). Examples of 
Multi-Objective Genetic Algorithms are Weight-Based 
GA: WBGA (Hajela and Lin, 2005), Random Weighted 
GA: RWGA (Murata and Ishibuchi, 1995), Vector 
Evaluated GA: VEGA (Schaffer, 1985), Niched Pareto 
GA: NPGA (Horn et al., 1994), Multi-Objective GA: 
MOGA (Fonseca and Fleming, 1993), Nondominated 
Sorting GA: NSGA (Srinivas and Deb, 1994), Fast Non-
dominated Sorting GA: NSGA-II, Strength Pareto 
Evolutionary Algorithm: SPEA (Zitzler and Thiele, 
1999), enhanced SPEA: SPEA2 (Zitzler et al., 2001) and 
Pareto-Archived Evolution Strategy: PAES (Knowles and 
Corne, 1999).  
 
In our previous work (Leesutthipornchai et al., 2009), we 
evaluated NSGA-II with all optimal and non-dominated 
solutions (i.e., the Pareto-front) using a well-known 
combinatorial problem (i.e., Knapsack problem with 2 
objective functions and 100 decision variables). The 
experiment showed that NSGA-II can provide excellent 
results. 
 
Problem Definition and Model Formulation 
In this section, we describe our multi-objective GRWA 
problem and present the GRWA model formulation. 
 
We assume that the WDM optical networks have hybrid 
optical-electronic switching devices to support grooming. 
In an all-optical network (Huang and Copeland, 2003), 
the signals can pass through network nodes in the optical 
domain. An all-optical network reduces the transmission 
delay at intermediate nodes by avoiding the OEO 
(Optical-Electrical-Optical) conversion between the 
optical and the electrical domains. Each node requires one 
optical port for receiving and another optical port for 
transmitting, with electrical ports required only at the 
source and destination of the connection. However, 
electrical ports are also needed at some intermediate 
nodes, wherever multiple commodities are groomed into 
the same wavelength channel. The number of 
transmission ports and wavelength channels required for 
traffic grooming are different from the case when the 
traffic connections are not groomed. Wavelength channels 
and switching ports are network resources that must be 
efficiently used. Grooming makes it possible to combine 
multiple traffic streams in a single wavelength channel. 
The so-called wavelength continuity constraint states that 
a wavelength channel can be assigned only to one light 
path connection, so that the wavelength channel does not 
change along the light path from the source to the 
destination node. 
 

In this paper, we consider the GRWA problem in WDM 
optical networks to serve a given set of commodities. 
Each commodity has many possible routings and each 
routing has several choices for aggregation with other 
connections and various choices of wavelength channel 
assignment. A percentage of commodities is allowed to be 
blocked if this is necessary to optimize wavelength 
channels and switching ports. A commodity that has been 
successfully assigned with a wavelength channel is called 
“accepted commodity”. Our GRWA problem aims to 
maximize the number of accepted commodities, to 
minimize the number of wavelength channels and to 
minimize the number of switching ports. We consider 
these three design objectives simultaneously, while 
preserving the wavelength continuity constraint. The next 
section presents our notation for this problem formulation. 
 
Set of Notations: Network Topology Properties 
Let N be the set of network nodes. E denotes the set of 
edges or links in the network. E(i,*) is the set of edges 
that leave from node i∈ N. E(*, i) is the set of edges that 
go to node i∈ N. D is the set of network edge distances 
where De represents the length of network edge e∈ E. 
Each network edge has |K| wavelength channels. K is the 
set of available wavelength channels. G is the set of 
aggregated groups in which multiple commodities are 
merged together. Each accepted commodity must belong 
to a group (which might have only a single member). Q is 
the set of given commodities, expressed as a source-
destination node pair with a bandwidth requirement. In 
this paper, the bandwidth is a fraction of the wavelength 
capacity. Pmax is the maximum number of switching ports 
in the network. PA is the required number of switching 
ports. QA is the number of accepted commodities. KA is 
the number of required/assigned wavelength channels. L 
is the maximum acceptable path length (in kilometer). H 
is an upper-bound hop counts. 
Let e

gω be the number of commodities in the group g∈ G 

on network edge e∈ E. e
gω is a positive integer number.

 
e
go)(ψ is the number of optical ports. e

ge)(ψ  is the 
number of electrical ports. The electrical port count is 
calculated as the sum of the electrical transmitting 
units e

gs)(ϕ  and electrical receiving 

units e
gd )(ϕ . e

gs)(ϕ is the number of electrical 
transmitting units of the group on the network 
edge. e

gd )(ϕ  is the number of electrical receiving units of 

the group on the network edge. e
go)(ϕ  is the number of 

optical units of the group on the network edge. Tacc is the 
minimum threshold value representing the ratio of 
accepted commodities that are required over the total 
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number of commodities, where 0 ≤ Tacc 
Q
QA≤ ≤ 1.       

|K| ≤ Kmax which is an upper-bound number of 
wavelengths. tq is the bandwidth requirement of the 
commodity. 
 
Set of Notations: Decision Variables 
Let δq,g

e,k denotes the decision variable of a commodity q 
that decides whether to occupy a wavelength channel k on 
network edge e with group g, or not. Note that δq,g

e,k is 
equal to 1 if the wavelength channel on the edge is 
occupied by the commodity and it belongs to a group; 
otherwise it is equal to 0.  
 
Given 
Network topology 
Set of source-destination node pairs with bandwidth 
requirements 
 
Assumption 
The combination of commodities can be performed in the 
electrical domain only. 
 
Design Objectives 
Minimize:  
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Note that a commodity can have several possible routes 
from source to destination but only one route is 
considered at a time and the available wavelength channel 
is considered to be occupied for the selected route. Our 
proposed network model considers grooming, routing and 
wavelength assignment, attempting to maximize the 
number of accepted commodities (QA), to minimize the 
number of required wavelengths (KA) and to minimize the 
number of required switching ports (PA), as shown in Eq. 
(1)-(4). The objective function in Eq. (2) transforms the 
maximization of accepted commodities to a minimization 
function. When QA is maximized to reach the total 
number of commodities (|Q|), the value of Eq. (2) will be 
minimized to 0.  
 

The objective functions are normalized by dividing with 
their total range of values (or magnitudes), so that all will 
have values in the interval [0,1]. 
 

The set of constraints Eq. (5)-(27) are described below.  
Eq. (5) is the network flow constraint. The flow of traffic 
that enters and leaves from node must equal 0. The traffic 
demand at the source node is -βq and the traffic demand at 
the termination node is βq. Decision variable βq represents 
the existence of a network commodity. βq=1, if the 
commodity has a network flow on the node. Otherwise, it 
is 0. 
Eqs. (6) and (7) are the wavelength bandwidth constraints. 
The wavelength bandwidth on the network edge for all 
commodities in the group must be less than or equal to 
one unit of the wavelength channel bandwidth. Since 
multiple commodities can be assigned to the group on 
network edge, in Eq. (6), the e

gℜ  is the maximum 
bandwidth required to support all commodities in group 
on the network edge. Eq. (7) ensures that each group must 
have a total bandwidth requirement less than or equal to 
1.The bandwidth granularities of all commodities are less 
than or equal to 1 wavelength. 
Eqs.(8) and (9) are the wavelength continuity constraints. 
Only one wavelength channel is used for the commodity 
throughout multiple (connected) edges. Since multiple 
edges can be used for the commodity with a wavelength, 
in Eq.(8), if the commodity occupies a wavelength 
channel on any edge, then γq

k = 1. If γq
k = 0, there is no 

assignment of wavelength channel for the commodity on 
any edge. Eq.(9) ensures that each commodity must have 
a number of assigned wavelength channels less than or 
equal to 1. 
Eq.(10) is the commodity assignment constraint. The 
commodity variable βq is equal to 1, if there exists one or 

more edge(s) occupied by the commodity with one 
wavelength channel. 
Eqs.(11) and (12) are the single group assignment 
constraints. A particular commodity can be assigned to 
only one group. In Eq.(11), if the commodity is assigned 
to a group, then gq ,Λ = 1. Otherwise, gq ,Λ  = 0. Eq.(12) 
ensures that each commodity must have the number of 
assigned groups less than or equal to 1.  
Eqs.(13) and (14) are the wavelength continuity 
constraints for the group. Only one wavelength channel is 
used for the group throughout multiple (connected) edges. 
Since multiple edges can be used for the commodity in 
group with a wavelength, in Eq.(13), if the group occupies 
a wavelength channel on any edge, then yg

k = 1. If yg
k = 0, 

there is no assignment of wavelength channel for the 
group on any edge. Eq.(14) ensures that each group must 
have the number of assigned wavelength channels less 
than or equal to 1.  
In Eq.(15), the number of accepted commodities (QA) is 
equal to the count of all commodities which can be routed 
(on one or multiple edges) from their source to destination 
and assigned with a wavelength channel throughout the 
route. 
In Eq. (16), the number of required wavelength channels 
(KA) is equal to the count of all assigned wavelength 
channels where each assigned wavelength channel is 
occupied by at least one accepted commodity. 
Eq. (17) is the number of commodities in the group on a 
network edge. 
Eq. (18) is the number of electrical transmitting units of 
the group on the network edge. If a network edge is the 
source of some commodity in a group, an electrical 
transmitting unit is required for adding the new 
commodity to the existing group. Note that if more than 
one commodity in the group has its source on the network 
edge, only one transmission unit is required for group on 
the network edge. For the group of multiple commodities, 
it is possible to drop the existing light path to remove a 
commodity from the group when the commodity reaches 
its destination. Therefore, in the second condition, for 
each network edge if there exists a commodity in the 
group that reaches its destination, a transmitting unit is 
required for adding the remaining connections after the 
commodity is split out of the group. In our model, it is 
possible to groom two commodities that do not have the 
same source and/or destination into the same wavelength 
channel. This gives rise to two additional conditions. For 
example in figure 1, commodities 1 and 2 are groomed 
into the same wavelength at edge 2→3. The network edge 
2→3 is neither the source nor the destination of 
commodities 1 and 2. However, an electrical port is 
required at node 2, in order to groom commodity 2 into 
the light path. Furthermore, an electrical port is required 
at node 3, where commodity 2 leaves the common light 
path, to add the remaining communications after 
commodity 2 is split out.  
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Eq. (19) is the number of electrical receiving units of the 
group on the network edge. As is the case with 
transmitting units, a unit is needed at each location where 
a commodity joins or leaves a path. 
Eq. (20) is the number of electrical ports for a group on a 
network edge. The number of electrical ports is calculated 
as the sum of electrical transmitting units e

gs)(ϕ  and 

electrical receiving units e
gd )(ϕ . The number of 

electrical ports for a group on a network edge may be 0 if 
none of the commodities in the group have their source or 
destination on the network edge. 
Eq. (21) is the number of optical units for the group on 
the network edge. If a commodity in the group traverses 
on the network edge, an optical unit is required for 
retransmitting the optical signal. Note that if more than 
one commodity in the group traverses on the network 
edge, only one transmission unit is required for group on 
the network edge.  
Eq. (22) is the number of optical ports for the group on 
the network edge. Twice as many optical ports as optical 
units are required for every network edge. One optical 
port is used for transmitting and another one for receiving.  
Eq. (23) is the equation for calculating the number of 
switching ports. The number of all switching ports is the 
summation of optical and electrical ports in all groups 
traversing one or more network edges. 
Eq. (24) is the wavelength utilization constraint. Each 
wavelength channel is selected if there is at least one 
commodity in the group which is set up. If there are two 
or more groups which are not overlapped, they can use 
the same wavelength channel (on different edges) subject 
to wavelength continuity constraint. 

In Eq. (25), the number of accepted commodities must be 
greater than or equal to a threshold. For example, Tacc=0.8 
means that 80% of all commodities must be accepted. 
In Eq. (26), the hop distance of commodity traversing on 
multiple edges must not exceed the hop count limit.  
In Eq. (27), the network link distance of commodity 
traversing on multiple edges must not exceed the length 
limit (in kilometers).  
Eqs. (28)-(36) define the decision variables used in the 
model. 
 
The routing of a commodity can be any of the possible 
routes that connect the specified source node to the 
specified destination node. Previously, the RWA (routing 
and wavelength assignment) problem has been shown to 
be NP-complete (Chlamtac et al., 1992). The GRWA 
problem considers not only routing and wavelength 
assignment but also combining multiple low rate traffic 
demands into the same wavelength channel. Our proposed 
network design model is solved heuristically using a 
hybrid evolutionary approach described in the next 
section. 
 
Multi-Objective Evolutionary Computation Heuristic 
In this section, we present heuristic algorithms to solve 
the multi-objective grooming, routing and wavelength 
assignment (GRWA) problem in optical network design. 
Our approach considers potential routes by using a 
Genetic Algorithm (GA), combines multiple low rate 
traffic demands with the Extended Traffic Grooming 
(ETG) algorithm, and assigns the wavelength channel by 
using the Maximum Degree First Wavelength Assignment 
(MaxDF) algorithm. Thus, we call our method GA-ETG-

1 2 3 4

5 6

λ1 λ1 λ1

λ1 λ1

λ1

Commodity 1 

Commodity 2 

λ1 λ1 λ1

λ1 λ1 λ1

Electrical port 

Optical port 
For commodity 1 

For commodity 2 

Third condition 

Fourth condition 

 
 
Fig. 1. The grooming condition in MP2MP for the electrical transmitting unit. 
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MaxDF. The Fast Non-dominated Sorting Genetic 
Algorithm (NSGA-II) is then applied to search for a set of 
non-dominated candidate solutions. 
  
Genetic Algorithm for Routing 
Banerjee and Sharan (2004) applied a Genetic Algorithm 
to solve a routing problem in WDM optical networks, 
based on a Fixed-Alternate Routing approach. Their 
algorithm limited the alternate routes of each commodity, 
considering only the Kth shortest routes. However, it is 
possible that some commodities require a longer route to 
avoid the congestion. In our research work, we propose a 
Genetic Algorithm for routing that allows most possible 
routes to be considered. 
 
GA normally requires several sub-processes. The string 
encoding process represents each potential solution as a 
“chromosome” made up of genes, that is, as a vector of 
numeric values for each solution dimension or 
component. An initial set of chromosomes is generated. 
Then the algorithm iterates through a number of 
evolutionary cycles. In each cycle, the chromosomes may 
be modified by crossover (swapping values between 
chromosomes) and mutation (random modification of 
particular “gene” positions). A fitness function that 
measures solution quality is applied to the resulting 
chromosomes. Then the chromosomes with the highest 
fitness values are retained for the next iteration.   

The string encoding used in this paper is a set of integers 
that indicates the route of each commodity. Suppose that 
we have a 5-node network (nodes labeled 1 through 5) 
and three commodities to be routed. The corresponding 
15 position string encoding is displayed in figure 2. Each 
commodity has a separate region of the string, with a 
number of positions equal to the total number of nodes in 
the network. Each position p represents one node on a 
potential path for that commodity. If position p has the 
value np this represents a path segment connecting from np 
to np+1. A value of np= -1 indicates that the commodity’s 
destination has been reached in previous connections. 
This string encoding scheme has the benefit that all 
possible routes can be considered. 
 
Crossover is a process that generates new solutions from 
existing solutions. We pair up the chromosomes and use 
one-point crossover for each pair. In our work, 80% of the 
population will be interchanged. Each commodity pair 
swaps the route sections starting at the selected crossover 
point. Duplicated nodes or loops are detected and deleted. 
Mutation generates new solutions from existing solutions. 
We use one bit mutation for 25% of the population. One 
node position is randomly selected for mutation. The 
connection between that node and the following node is 
deleted, and the shortest alternative path between those 
nodes is calculated. If a new shortest path is found, the 

 Commodity 1: from node 1  node 3 
Commodity 2: from node 2  node 4 
Commodity 3: from node 3  node 4 
Commodity 1 Commodity 2 Commodity 3 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 5 4 3 -1 2 1 5 3 4 3 5 4 -1 -1

 
  4  31  5    43 5  
 

  2  1  5 3 4  
 

Commodity 1:  
  4 31  5  

Commodity 2:  
  2  1 5 3 4

 

Commodity 3:  
  43  5

 
 

Fig. 2. An example of string encoding. 
 

0 1 2 3 54 876
C0:0.5 C1:0.4 C5:0.3

C2:0.4
C3:0.4

C6:0.3 C7:0.3

C4:0.4
 

 
Fig. 3. Set of commodities with bandwidth requirement in an example network. 
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intervening nodes will be inserted into the chromosome. 
Otherwise the previous path will be retained. 
 
As discussed earlier, a GA usually evaluates the fitness of 
the individuals in the current population and chooses the 
fittest instances to survive into the next generation. In our 
work, the fitness testing and selection is part of the 
NSGA-II process. 
 
Extended Traffic Grooming 
In traffic grooming, commodities that have overlapping 
paths and whose total traffic demands are less than or 
equal to the channel capacity can be combined into a 
group using the same wavelength channel. 
 
Previously, Zhu and Mukherjee (2002) proposed 
Maximizing Single-Hop Traffic (MST) and Maximizing 
Resource Utilization (MRU) techniques for traffic 
grooming. These grooming algorithms sort the set of 
commodities assorting to some criterion and then 
combine multiple overlapped commodities into the same 
group by following the ordering. Overlapped 
commodities early in the sequence are considered for 
grouping first.  
 
In this paper, we propose that some non-overlapped 
commodities can be groomed into the same group if there 
exists a commodity which overlaps or bridges the routes 
between the non-overlapped commodities. Suppose that 
we have eight commodities with routings generated by 
using the GA, as shown in table 1 and figure 3. In Fig. 3, 
C0:0.5 represents a commodity C0 with 0.5 unit of 
wavelength requirement. We can see that the routes for 
C0 and C1 do not overlap. However, C0 and C1 can be 
combined together with C2 because C2 overlaps with 
both C0 and C1. By doing this, we can reduce the number 
of wavelength channels required in the optical network 
design. 
 
Table 1. The route of each commodity obtained from GA. 

 
Commodity Routing Commodity Routing 

0 0→1→2→3 4 3→4→5 
1 3→4→5→6 5 6→7→8 
2 2→3→4 6 6→7 
3 3→4→5 7 7→8 

 
Before we combine multiple commodities into groups, we 
create an auxiliary graph for the set of light paths to 
represent which commodities overlap. In the auxiliary 
graph shown in figure 4, which corresponds to the 
routings in table 1, each node represents a commodity. If 
a commodity’s path overlaps with another commodity a 
link is created between these commodity nodes in the 
auxiliary graph. 
 

 

2
1

3 
4 0

7 5 
6

 
 

Fig. 4. The auxiliary graph of overlapped commodities. 
 
In the traditional traffic grooming approach using MST, 
the commodities that overlap will be considered for 
grooming into a group. For example, in figure 4, 
commodities 3 and 4 are groomed first because they have 
the same source and destination. After that C0 and C1 are 
considered. C0 and C1 cannot be groomed together 
because they are not overlapped. C2 is groomed with C0 
because high traffic demand is considered first. C1 cannot 
be groomed with C0 and C2 because their light paths 
overlap. Lastly, C5, C6 and C7 are groomed together in 
the same group. 
 
In our extended traffic grooming (ETG) approach, we 
reexamine commodities in existing groups after this first 
phase. ETG will try to combine groups by searching for 
commodities in one group that overlap with commodities 
in another group, where the total bandwidth of the 
combined groups will not exceed the wavelength 
bandwidth constraint.  
 
For example, C0 and C2 are first assigned into a group. 
C1 forms a second group on its own. We can add C1 to 
the group including C0 and C2 because C2 also overlaps 
with C1 and the summation of bandwidth on the path 
from 3 to 4 does not exceed the wavelength bandwidth 
constraint. Table 2 compares the set of commodities 
groomed in each group by using MST and ETG 
algorithms, for this example. The MST requires four 
groups while ETG requires only three. 
 
The ETG algorithm sorts the commodities in descending 
order by the number of hops in their routes and their 
bandwidth requirements (traffic demand). Our 
experiments during algorithm development showed that 
when the bandwidth required by each commodity is 
small, the sequence of commodities should be sorted by 
bandwidth requirements first, and then by number of 
hops. In this paper, if the average bandwidth required is 
less than 0.4 wavelengths, we sort by bandwidth first, and 
then by number of hops. Otherwise we sort by number of 
hops first. 
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In table 1, the set of commodities has the average traffic 
demand of 0.375 which is less than 0.4 wavelengths. 
Therefore, the sequence of commodities is sorted in 
descending order first by the bandwidth requirements and 
then by the hop count as shown in table 3. 
 
Table 3. The groomed commodities. 

 

Commodity Traffic 
demand 

Number of 
hops Group ID. 

0 0.5 3 0 
1 0.4 3 0 
2 0.4 2 0 
3 0.4 2 1 
4 0.4 2 1 
5 0.3 2 2 
6 0.3 1 2 
7 0.3 1 2 

 
Maximum Degree First (MaxDF) Wavelength 
Assignment 
We propose the Maximum Degree First (MaxDF) 
algorithm to assign a limited number of wavelength 
channels to a set of commodities. After we combine 
multiple low-rate traffic demands into groups in the traffic 
grooming phase described previously, we create a second 
auxiliary graph to specify which groups of commodities 
overlap, as shown in figure 5. A traffic group overlaps 
with another group if it has at least one commodity whose 
route overlaps with a member of the other group. For 
example, Group 0 overlaps with Group 1 because 
commodity1 in the Group 0 overlaps with commodities 
3and 4 in the Group 1. In the auxiliary graph, the circle 
symbol represents a group, while the rectangle shows 
members in the group. The link between a pair of nodes 
represents the existence of an overlap. In figure 5, for 
example, we have three groups. Groups 0 and 1 overlap 
(i.e., at network edge 3→4 and edge 4→5 in Fig. 3). 
Therefore, a link between overlapping groups is created. 
Any pair of auxiliary nodes that has a link cannot be 
assigned to the same wavelength. 
 

 

0 1

2
5, 6, 7

0, 1, 2 3, 4
 

 

: Group 

: Elements in 
  a group 

 
 
Fig. 5. The auxiliary graph of overlapped commodities in 
the group. 
 
We modify the traditional First-Fit algorithm (Banerjee 
and Sharan, 2004) that assigns the wavelength from 
smallest channel index to the highest channel index. In 
our algorithm, we assign the wavelength according to the 
auxiliary graph. A node in the auxiliary graph that has a 
high degree represents a group that overlaps with others. 
Therefore, the maximum-degree node (group of 
commodities) in the auxiliary graph should be assigned 
first. If low degree nodes in the auxiliary graph are 
selected and assigned first, many other commodities in 
the group will be blocked. The MaxDF algorithm can be 
presented as follows. 
 
Maximum Degree First (MaxDF) Algorithm 
1. Sort all nodes (groups of commodities) by the 

number of degrees from the largest degree to the 
smallest degree. 

2. At the first rank (largest number of degree, or highest 
overlapped group of commodities with the other), 
assign the first wavelength. 

3. At the next group of commodities, if its commodity is 
not overlapped with the previous groups of 
commodities, assign the same wavelength channel as 
the previous group of commodities, else assign the 
next wavelength. 

4. Repeat Step 3, until all groups of commodities are 
considered. 

 
After the MaxDF process, we have the set of commodities 
in the group with wavelength channels as shown in figure 
6. For instance, channel 0 is assigned to Groups 0 and 2 

Table 2. The set of commodities and link bandwidth in the groomed groups. 
 

MST ETG 

Set of commodities Joint edge Link 
bandwidth Set of commodities Joint edge Link 

bandwidth 
3→4 0.8 2→3 0.9 C3 and C4 
4→5 0.8 

C0, C1 and C2 
3→4 0.8 

C0 and C2 2→3 0.9 3→4 0.8 
C1  0.4 

C3 and C4 
4→5 0.8 

6→7 0.6 6→7 0.6 C5, C6 and C7 
7→8 0.6 

C5, C6 and C7 
7→8 0.6 
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because none of the commodities in these groups overlap. 
The commodities in the group also have the same 
wavelength channel as shown in figure 7. 
 

Group ID 0 1 2 
Wavelength Channel 0 1 0 

 
Fig. 6. The wavelength channel of the set of groups. 
 

Commodity 0 1 2 3 4 5 6 7 
Wavelength channel 0 0 0 1 1 0 0 0 

 
Fig. 7. The wavelength channel of the set of commodities. 
 
Our previous work (Leesutthipornchai et al., 2009) 
compared the performance of our routing algorithm with 
the traditional routing approach called Fixed Alternate 
Routing (FAR) and our wavelength assignment algorithm 
with the traditional wavelength assignment called First-Fit 
(FF). That study showed that our combined routing and 
wavelength assignment algorithms can assign the 
wavelength as fast as the First-Fit algorithm but with 
superior results in terms of accepted commodity requests. 
 
NSGA-II Algorithm 
Our GA-ETG-MaxDF algorithm generates many possible 
solutions, which tradeoff between our multiple objectives. 
We need to identify the best solution candidates in this 
large solution set. To do this, we employ the NSGA-II 
algorithm. 
 
The Fast Non-dominated Sorting Genetic Algorithm 
(NSGA-II) proposed by Deb et al. (2002) is well-known 
as an efficient technique to search for the Pareto-optimal 

set in general multi-objective optimization problems. 
NSGA-II is a very fast algorithm that can rapidly 
converge to the Pareto-front. In this paper, we adapt the 
NSGA-II for the multi-objective grooming, routing and 
wavelength assignment (GRWA) problem as shown in 
figure 8. 
 
The algorithm starts with population initialization. The 
five shortest paths for each commodity are created as a 
starting point. More possible paths are randomly 
generated, up to the specified population size, which was 
200 in this study. The initialization stage produces 
multiple sets of routes, each of which represents a 
possible routing solution for the given set of commodities 
and bandwidth requirements. 
 
In the next stage, which is used for traffic grooming, 
multiple low rate traffic demands are assigned to the same 
group to conserve wavelength channels and reduce the 
number of switching ports. We consider three traffic 
grooming algorithms which are Extended Traffic 
Grooming (ETG), Maximizing Resource Utilization 
(MRU) and Maximizing Single-hop Traffic (MST). 
 
In the third stage which is used for wavelength 
assignment, non-overlapped groups are assigned to the 
same wavelength channel. After this wavelength 
assignment procedure, the number of accepted 
commodities, wavelength channels and switching ports 
are calculated. The number of required switching ports 
and wavelengths depend on whether a commodity is 
accepted or not. We consider three wavelength 
assignment methods which are First Fit (FF), Minimum 
Degree First (MinDF) and Maximum Degree First 
(MaxDF). 

1) Population 
Initializing 

2) Traffic 
Grooming 

3) Wavelength 
Assignment 

4) Fast-non-
dominated-sorting

5) Crowding-
distance-assignment 

6) Selection 
Procedure 

7) GA for routing 
Recombination  

(Crossover and Mutation) 

8) Increment the 
iteration counter

Termination 

Is the no. of max. 
iteration met? 

Set of routes for each 
traffic demand

Set of routes for each 
traffic demand

Top-half elite 
population 

No. of accepted commodities 
No. of wavelengths 

No. of ports 

No 

Yes 

 
Fig. 8. The modified NSGA-II procedure. 
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Next, the potential solutions are sorted by solution quality 
and the best 50% are preserved for the next generation. 
 
After sorting and selection, multiple sets of routes are 
exchanged and mutated in order to obtain new feasible 
routes that do not exist in the current population. Then the 
iteration counter is incremented. Lastly, the algorithm 
checks for the termination condition. In this paper, the 
algorithm is terminated when the maximum number of 
iterations is met, which in this case was 2,400. 
 
RESULTS AND DISCUSSION 
 
In our experiments, we considered the multi-objective 
GRWA problem with given network topologies, set of 
commodities and set of bandwidth requirements. We used 
a uniform distribution to randomly generate a set of test 
problems with various numbers of commodities and 
bandwidth requirements. We assumed that all edges have 
the same wavelength capacity. We limited the number of 
wavelength channels in each edge/link of the network and 
required at least 80% of the requested commodities must 
be accepted. 
 

For our test network topologies, we adapted three 
different example networks which are National Science 
Foundation Network (NSFNET) with 14 nodes and 42 
directional edges (Adhya and Datta, 2009), Chinese 
National Network (CHNNET) with 15 nodes and 54 
directional edges (Guo et al., 2006) and Advanced 
Research Projects Agency Network (ARPANET) with 20 
nodes and 64 directional edges. Table 4 summarizes the 
characteristics of these networks. CHNNET has the 
highest value of average degree (i.e., 3.6). 

 
We implemented our algorithms with new own code in 
Java and ran our tests on a Pentium 4 PC (Core 2 Quad 
CPU 2.83 GHz, 3.25 GB of RAM).We compared our 
proposed GA-ETG-MaxDF heuristic with traditional 
traffic grooming algorithms and wavelength assignments 
methods which are 1) GA-MRU-FF (GA for routing, 
MRU for grooming and FF for wavelength assignment) 
and 2) GA-MST-FF (GA for routing, MST for grooming 
and FF for wavelength assignment). We used the same set 
of network configurations and traffic parameters for all 
traffic grooming algorithms. The obtained results were 
compared to each other as shown in figure 9-14.  

Table  4. The features of various network topologies. 
 

Degree 
Network 

topologies 
No. of (non-

directional) edges 
No. of 
nodes 

No. of edges/ 
No. of nodes Total deg.

Average deg. (Total 
Deg./ No. of nodes) 

Min deg. Max deg. 

NSFNET 21 14 1.5 42 3 2 4 
CHNNET 27 15 1.8 54 3.6 3 5 

ARPANET 32 20 1.6 64 3.2 3 4 
 

 
 
Fig. 9. The non-dominated solutions obtained from NSFNET. 
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In multi-objective optimization, the results are plotted as a 
front or set of non-dominated solutions. Table 5 also 
shows the multi-objective performance metrics and 
computation time obtained from each approach for 
various network configurations. 
 
Our results show that the set of solutions from the GA-
ETG-MaxDF is located in the area of high accepted 
commodities, few switching ports and few wavelengths, 
when compared with other algorithms. This is true for all 
network topologies as shown in figures 9-14. For the 
NSFNET topology, as shown in figures 9-11, the 

solutions from the GA-ETG-MaxDF require 626-860 
switching ports while the solutions from the GA-MRU-FF 
and the GA-MST-FF require 632-886 and 680-962 ports, 
respectively. Figure 10 show that the GA-ETG-MaxDF 
technique can support 150 commodities within 860 ports. 
With the same number of ports, the GA-MRU-FF 
technique can support 145 commodities and the GA-
MST-FF can support only 140 commodities. In other 
words, the GA-ETG-MaxDF requires a fewer number of 
switching ports compared with the GA-MRU-FF and the 
GA-MST-FF for satisfying all commodities. 
 

 
 

Fig. 10. The relation between accepted commodity and switching port obtained from NSFNET (with the number of
wavelengths in the range of 6 to 15). 
 

 
 

Fig. 11. The relation between accepted commodity and wavelength obtained from NSFNET (with the number of
switching ports in the range of 626 to 962). 
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Figure 11 shows that the GA-ETG-MaxDF can support a 
larger number of accepted commodities than the GA- 
MRU-FF and the GA-MST-FF with the same number of 
wavelengths. To satisfy all commodities, the GA-ETG-
MaxDF requires fewer wavelength channels than the GA-
MRU-FF and the GA-MST-FF.  
 
Similar patterns of results are obtained for the CHNNET 
topology as shown in figures 12 and 13, and the 
ARPANET topology as shown in figure 14. 
 

In addition to the results shown in figures 9-14, we 
compared values of various multi-objective performance 
metrics (Zitzler, 1999; Tan et al., 2001; Nebro et al., 
2009), namely Hyper-volume (HV), Spread, and Inverted 
Generational Distance (IGD). These metrics have been 
proposed to measure the “goodness” of a Pareto solution 
set, independent of the decision criteria functions. 
 
Table 5 together with figures 15-17 show the obtained 
performance metrics of GA-ETG-MaxDF compared to 
GA-MST-FF and GA-MRU-FF. 

 
 
Fig. 12. The non-dominated solutions obtained from CHNNET. 
 

 
 
Fig. 13. The relation between switching port and wavelength obtained from CHNNET. 
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Fig. 14. The non-dominated solutions obtained from ARPANET. 
 
Table 5. Multi-objective performance metrics of GA-ETG-MaxDF, GA-MST-FF and GA-MRU-FF in various network 
topologies. 
 

CPU time (sec.) Traffic demands (No. of 
source-destination pairs) 

Network 
topologies GRWA techniques HV. Spread IGD. 

Average* Total 
GA-ETG-MaxDF 0.4701 0.4262 0.0000 2,352.67 7,058.00 

GA-MST-FF 0.2684 0.4000 0.0556 2,320.00 6,960.00 NSFNET 
GA-MRU-FF 0.3333 0.3555 0.0317 2,300.33 6,901.00 

GA-ETG-MaxDF 0.3677 0.0692 0.0000 2,613.67 7,841.00 
GA-MST-FF 0.0129 0.8172 0.2411 2,561.00 7,683.00 CHNNET 
GA-MRU-FF 0.0839 0.6010 0.2308 2,548.00 7,644.00 

GA-ETG-MaxDF 0.3825 0.2685 0.0000 4,511.33 13,534.00 
GA-MST-FF 0.2235 0.4654 0.0494 4,433.00 13,299.00 

50 

ARPANET 
GA-MRU-FF 0.2497 0.4619 0.0487 4,428.33 13,285.00 

GA-ETG-MaxDF 0.5085 0.4084 0.0062 8,606.33 25,819.00 
GA-MST-FF 0.1738 0.5213 0.0525 8,591.33 25,774.00 NSFNET 
GA-MRU-FF 0.3181 0.5411 0.0330 8,594.00 25,782.00 

GA-ETG-MaxDF 0.5826 0.4244 0.0051 9,713.67 29,141.00 
GA-MST-FF 0.4142 0.3532 0.0195 9,602.67 28,808.00 CHNNET 
GA-MRU-FF 0.5154 0.3482 0.0130 9,584.00 28,752.00 

GA-ETG-MaxDF 0.4875 0.4170 0.0000 16,860.33 50,581.00 
GA-MST-FF 0.2120 0.4557 0.0384 16,728.33 50,185.00 

100 

ARPANET 
GA-MRU-FF 0.3230 0.4238 0.0270 16,729.00 50,187.00 

GA-ETG-MaxDF 0.5064 0.5124 0.0000 19,265.33 57,796.00 
GA-MST-FF 0.1522 0.5412 0.0502 19,249.67 57,749.00 NSFNET 
GA-MRU-FF 0.2704 0.4818 0.0369 19,269.00 57,807.00 

GA-ETG-MaxDF 0.5884 0.4832 0.0051 21,544.00 64,632.00 
GA-MST-FF 0.3420 0.4709 0.0245 21,400.00 64,200.00 CHNNET 
GA-MRU-FF 0.4955 0.4894 0.0127 21,254.33 63,763.00 

GA-ETG-MaxDF 0.4859 0.4830 0.0098 37,212.67 111,638.00 
GA-MST-FF 0.2106 0.4953 0.0346 37,218.67 111,656.00 

150 

ARPANET 
GA-MRU-FF 0.2558 0.4972 0.0288 37,187.67 111,563.00 

*per 1 replication run 



Canadian Journal of Pure and Applied Sciences 3076

Hyper-Volume (HV) measures the coverage area of 
solutions. A high HV value is preferred, since this 
indicates that the non-dominated solutions cover the 
objective space more broadly. Table 5 and figure 15 show 

that the solutions from the GA-ETG-MaxDF give a higher 
HV value than those of GA-MRU-FF and GA-MST-FF in 
all network topologies and all cases of traffic demands.  
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Fig. 15. Hyper-volume of traffic grooming algorithms with 50, 100 and 150 commodities for three network topologies. 
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Fig. 16. Spread of traffic grooming algorithms with 50, 100 and 150 commodities for three different network 
topologies. 
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For the Spread metric, a low value is preferred. Low 
Spread values indicates that the solutions distribute into 
all objective areas equally (not crowding into one small 
objective area). In our experimental results, the Spread 
values from the three traffic grooming algorithms do not 
show any consistent patterns for NSFNET or CHNNET. 
However, for the ARPANET topology, the obtained 
results from our GA-ETG-MaxDF approach have lower 
Spread values than alternative approaches for all sizes of 
traffic demand as shown in figure 16. 
 
Inverted Generational Distance (IGD is the distance from 
the obtained solutions to the Pareto optimal set. Lower 
IGD values indicate better solution quality. IGD is equal 
to zero when all elements are in the Pareto optimal set. 
Table 5 and figure 17 show that the results from our GA-
ETG-MaxDF approach have lower IGD values than 
alternative approaches for all sizes of traffic demands and 
all network topologies. In some cases, such as for 
NSFNET topology with 150 commodities, the IGD value 
from GA-ETG-MaxDF is equal to 0. This means that all 
obtained solutions from GA-ETG-MaxDF are in the 
Pareto optimal set. 
 
Finally, table 5 also shows the average and total CPU 
time of the three traffic grooming algorithms used to find 
solutions indifferent network topologies and traffic 
demands. The average and total CPU time of the three 
traffic grooming algorithms do not differ in any consistent 
way.  These times are acceptable for offline computation. 

In summary, the experimental results demonstrate that the 
GA-ETG-MaxDF heuristic outperforms both the GA-
MST-FF and the GA-MRU-FF for solving the GRWA 
problem with a variety of network topologies and levels 
of demand. The solution sets produced by the algorithm 
also tend to score higher on measures of Pareto 
optimality. 
 
CONCLUSION 
 
In this paper, the Traffic Grooming, Routing and 
Wavelength Assignment (GRWA) problem in WDM 
optical network is addressed with a multi-objective 
network optimization approach. Our network design 
objectives are to maximize the number of accepted 
commodities, minimize the number of required 
wavelengths and minimize the number of switching ports. 
We propose a heuristic multi-objective solution procedure 
which combines GA-ETG-MaxDF and NSGA-II 
algorithms to solve the GRWA problem and search for a 
set of non-dominated solutions. The GA-ETG-MaxDF 
considers all potential routes by using Genetic Algorithm 
(GA), combines multiple low rate traffic demands with 
Extended Traffic Grooming (ETG) algorithm, and assigns 
the wavelength channel by using Maximum Degree First 
Wavelength Assignment (MaxDF) algorithm. The GA-
ETG-MaxDF heuristic allows multiple non-overlapped 
commodities to be groomed into the same group which 
results in better utilization of network resources. We 
compared the performance of our proposed GA-ETG-

NS FNE T

0

0.01

0.02

0.03

0.04

0.05

0.06

50 100 150

IG
D

 

C HNNE T

0

0.05

0.1

0.15

0.2

0.25

0.3

50 100 150

IG
D

 

ARPANE T

0

0.01

0.02

0.03

0.04

0.05

0.06

50 100 150

IG
D

 

 

GA-ETG-MaxDF 

GA-MST-FF 

GA-MRU-FF 

 

 

Fig. 17. IGD of traffic grooming algorithms with 50, 100 and 150 commodities for three different network topologies. 
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MaxDF approach with previously published traffic 
grooming algorithms, MST-FF and MRU-FF. All traffic 
grooming approaches used the same GA process for route 
generation and NSGA-II for searching non-dominated 
solutions. The results showed that the proposed GA-ETG-
MaxDF heuristic together with NSGA-II algorithm 
outperforms the other two traffic grooming algorithms by 
providing a set of non-dominated solutions with a higher 
number of accepted commodities, fewer switching ports 
and fewer wavelength channels. We also compared all 
three traffic grooming algorithms by using the multi-
objective performance metrics of Hyper-volume (HV), 
Spread and Inverted Generational Distance (IGD). We 
found that the results from the GA-ETG-MaxDF were 
generally superior to those from the existing traffic 
grooming approaches. Therefore, we are confident that 
the GA-ETG-MaxDF technique with NSGA-II algorithm 
is effective for solving the GRWA problem with multiple 
design objectives. Our research work makes several 
contributions as follows. 1) We have formulated the 
traffic grooming, routing and wavelength assignment 
(GRWA) problem in WDM optical networks as a multi-
objective optimization model. 2) We have developed an 
effective technique called “GA-ETG-MaxDF” for solving 
the GRWA problem. 3) We have applied the state-of-the-
art NSGA-II approach together with the GA-ETG-MaxDF 
technique as a multi-objective evolutionary computation 
heuristic to solve the multi-objective GRWA network 
design problem. 
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